
Def 1.2.1 Field: set with functions

• + : F × F → F ; (λ, µ)→ λ+ µ

• · : F × F → F ; (λ, µ)→ λµ

such that (F,+) and F \ {0}, ·) are abelian groups, with

λ(µ+ ν) = λµ+ λν.

Neutral identity elements: λ + 0F = λ and λ · 1F = λ. Additive
inverse: ∀λ ∈ F,∃ − λ such that λ+ (−λ) = 0F .
Multiplicative inverse: ∀λ ∈ F,∃λ−1 such that λ · λ−1 = 1F .

Vector Space: V over a field F is a pair consisting of an abelian
group (V,+) and a mapping V × F → V ; (λ,~v)→ λ~v, such that
the following identities hold:

• λ(~v + ~w) = (λ~v) + (λ~w)

• (λ+ µ)~v = (λ~v) + (µ~v)

• λ(µ~v) = (λµ)~v

• 1F~v = ~v

1.2 Fields and Vector Spaces

Def 1.4.1: U ⊆ V is a vector subspace if U contains the 0 vector, and
whenever u,v ∈ U, then u + v ∈ U and λv ∈ U .

Prop 1.4.5: Let T be a subset of V over F . 〈T 〉 ⊆ V , the subset
generated by the elements of T , unioned with the 0 vector, is the smallest
vector subpsace.

Def 1.4.7 Subset of a vector space is a generating set if its span is the
whole vector space.

Def 1.4.9 Power set: of X is the set of all subsets of X.

Prop : Intersection of vector subspaces is itself a vector space.

1.4 Vector Subspaces

Def 1.5.1 a subset L of a vector space V is called linearly independent
if for all pairwise different vectors ~v1, ... ~vr ∈ L and arbitrary scalars
α1, ...αr ∈ F ,

α1 ~v1 + ...αr ~vr = 0 =⇒ α1 = ... = αr.

Def 1.5.8 A basis of a vector space V is a linearly independent generating
set in V .

Thm 1.5.11 Let ~v1, ... ~vr ∈ V be vectors. The family (~vi)1≤i≤r is a basis
of V iff the ”evaluation”mapping

Φ : F
r → V ; (α1, ...αr)→ α1 ~v1 + ...+ αr ~vr

is a bijection ** if every vector can be determined by a unique linear com-
bination of elements in the family, then it is a basis.
Proof: fam is a generating set ⇐⇒ surjection, fam is linearly independent
⇐⇒ injection.

Thm 1.5.12 Characterisation of bases the following are equivalent

• E is a basis

• E is minimal among all generating sets

• E is maximal among all linearly independent sets

1.5 Linear Indpendence and Bases

Cor 1.5.13 If V is a finitely generated vector space, then V has a basis.

Thm 1.5.14

1. If L ⊂ V is a linearly independent subset and E is minimal among
all generating sets of V with L ⊆ E, then E is a basis.

2. If E ⊆ V is a generating set and if L is maximal among all linearly
independent sets of V with L ⊆ E, then L is a basis.

Def 1.5.15 Let X be a set and F a field. Then the set Maps(X,F ) of all
mappings f : X → f is an F vector space under pointwise addition and
scalar multiplication.
free vector space on X : the subset of mappings which send almost all
elments of X to zero is a vector subspace:

F 〈x〉 ⊆ Maps(X,F ).

Thm 1.5.16 Let (~vi)i∈I be a family of vectors from V . Then

1. (~vi)i∈I is a basis of V ⇐⇒

2. ∀~v ∈ V , there is exactly one family of elements from (αi)i∈I from
F , almost all of which are zero, and such that

~v =
∑
i∈I

αi ~vi.

Thm 1.6.1 No linearly independent subset of a given vector
space has more elements than a generating set. Thus, if V is a
vector space, L ⊂ V a linearly independent subset and E ⊆ V a
generating set, then

|L| ≤ |E|.

Thm 1.6.2 Let V be a vector space, L ⊂ V a finite linearly
independent subset and E ⊆ V a generating set. Then there is an
injection φ : L→ E such that (E \ φ(L))∪L is also a generating
set for V .

Thm 1.6.3 Let M ⊂ V be a linearly independent subset, and
E ⊆ V a generating subset, such that M ⊆ E. If ~w ∈ V \M
is a vector not belonging to M such that M ∪ {~w} is linearly
independent, then there exists ~e ∈ E \M such that {E \~e}∪{~w}
is a generating set for V .

Cor 1.6.4 Let V be a finitely generated vector space.

1. V has a finite basis.

2. V cannot have an infinite basis.

3. Any two bases of V have the same number of elements.

Def 1.6.5 The cardinality of one basis of a finitely generated
vector space V is called the dimension of V .

Cor 1.6.8 V finitely gen. vector space.

1. Each lin. indep subset L ⊂ V has at most dimV elements,
and if |L| = dimV then L is a basis.

2. each gen. set E ⊆ V has at least dimV elements, and if
E = dimV then E is a basis.

Cor 1.6.9 A proper vector subspace of a finite dim. vector space
has a strictly smaller dimension.
Thm 1.6.11 V vector space, U,W ⊆ V vector subspaces. Then

dim(U) + dim(W ) = dim(U +W ) + dim(U ∩W )

1.6 Dimension of a Vector Space

Def 1.7.1 V and W vector spaces over F . A map f : V → W is
a linear map or homomorphism if ∀ ~v1, ~v2 ∈ V and λ ∈ F

f( ~v1 + ~v2) = f( ~v1) + f( ~v2), f(λ ~v1) = λf( ~v1)

Bijective homomorphism= isomorphism, homomorphism V → V
= endomorphism. Isomorphism V → V = automorphism.

Def 1.7.5 Fixed point: sent to itself by a mapping. Set of fixed
points of a map f : X → X: Xf = {x ∈ X : f(x) = x}.

Def 1.7.6 Two vector subspaces U,W of a vector space V are
complementary if addition defines a bijection U ×W → V . V is
the direct sum of U and W .

Thm 1.7.7 Let n be a natural number. Then any vector space
over F is isomorphic to Fn iff it has dimension n.

Lem 1.7.8 V,W vector spaces over F and B ⊂ V a basis. The
restriction of a mapping gives a bijection

Homf (V,W )→Maps(B,W ), f → f |B

A linear map determines and is determined by the values it takes
on a basis.

Prop 1.7.9

1. Every injective linear map f : V →W has a left inverse (g
such that g ◦ f = idv).

2. Every surjective linear map f : V →W has a right inverse
(g such that f ◦ g = idw)

1.7 Linear Mappings

Def 1.8.1 im(f) is a vec. subspace of W . ker(f) = f−1(0) =
{v ∈ V : f(v) = 0} is a vec. subspace of V .
Lem 1.8.2 linear mapping is injective iff kernel is 0.

Thm 1.8.4 Rank-Nullity Theorem:

dim(V ) = dim(kerf) + dim(imf)

1.8 Rank-Nullity Theorem

Thm 2.1.1 Let m,n ∈ N. ∃ bijection between the space of linear
mappings Fm → Fn and Mat(n×m;F ):

M : HomF (Fn, Fm)→̃Mat(n×m;F ), f 7→ [f ]

Note: the columns of the representing matrix are the images of f
under the standard basis elements of Fm:

[f ] = (f( ~e1)...f( ~em))

Prop M is an isomorphism of vector spaces.
Def 2.1.6 Lrt n,m, l ∈ N, F a field, and let A ∈ Mat(n ×
m;F ), B ∈Mat(m× l;F ). The product A ◦B ∈Mat(n× l;F )
is defined by

(AB)ik =

m∑
j=1

AijBjk

Thm 2.1.8 Let g : F l → Fm and f : FmtoFn be linear mappings.
Then [f ◦ g] = [f ] ◦ [g].
Prop 2.1.9 properties of matrices (trivial).
Exercise 26: (AB)T = BTAT

2.1 Linear Mappings Fm → Fn and Matrices
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Def 2.2.1 Matrix A is invertible if ∃ B and C such that BA = I
and AC = I
Following are equivalent for a square A:

1. ∃ square matrix B such that BA = I

2. ∃ square matrix C such that AC = I

3. A is invertible.

inverse of A is unique, denoted by A−1.

Def General Linear Group: group of invertible n × n matrices,
denoted GL(n;F ) := Mat(n;F )×.

Def 2.2.2 elementary matrix: differs from the identity matrix in
at most on entry.

Thm 2.2.3 every square matrix with entries in a field can be
written as the product of elementary matrices.

Def 2.2.4 Any matrix whose only nonzero entries lie on the
diagonal, and which has first 1’s along the diagonal and then 0’s
is in Smith Normal Form.

Thm 2.2.5 For each matrix A ∈ Mat(n × m;F ), there exist
invertible matrices P and Q such that PAQ is in Smith Normal
Form.

Def 2.2.6 Column/row rank is the dimension of the subspace
generated by the columns/rows of A.

Thm 2.2.7 The column rank and row rank of any matrix are equal.

Def 2.2.8 full rank: maximal rank.

2.2 Basic Properties of Matrices

Thm 2.3.1 F a field, V and W vector spaces over F with orde-
red bases A = ( ~v1, ..., ~v2) and B = ( ~w1, ..., ~w2). To each map
f : V →W we associate a rep. matrix B [f ]A with

f( ~vj) = a1j ~w1 + ...+ anj ~wn ∈W

note: B [f ]A = B−1[f ]A, where [f ] is in standard basis.

Thm 2.3.2 Let F be a field and U, V,W finite dimensional vector
spaces over F with ordered basis A,B,C. If f : U → V and
g : V →W , then

C [g ◦ f ]A =C [g]B ◦B [f ]A

2.3 Abstract Linear Mappings and Matrices

Def 3.1.1 a ring is a set with two operations (R,+, ·), that satisfy:

1. (R,+) is an abelian group.

2. (R, ·) is a monoid - · is associative and has an identity element
such that 1 · a = a = a · 1 for all a ∈ R

3. a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c)

If multiplication is commutative, then R is a commutative ring.

Prop 3.1.7 A natural number is divisible by 3, precisely when the sum of
its digits is divisible by 3.

Def 3.1.8 a field is a nonzero commutative ring F in which every nonzero
element has an inverse a−1 ∈ F such that a · a−1 = 1 = a−1a.

Prop 3.1.11 Let m be a positive integer. The commutative ring Z \mZ is
a field iff m is prime.

3.1 Rings

Lem 3.2.1 Let R be a ring and a, b ∈ R. Then

• 0a = 0 = a0

• (−a)b = −(ab) = a(−b)

• (−a)(−b) = ab

Def 3.2.3 Let m ∈ Z. The m-th multiple ma of an element a in an abelian
group R is

ma = a+ a+ a+ ...+ a ifm > 0

with 0a = 0¡ and negative multiples defined by (−m)a = −(ma).

Lem 3.2.4

• m(a+ b) = ma+mb

• (m+ n)a = ma+ na

• m(na) = (mn)a

• m(ab) = (ma)b = a(mb)

• (ma)(nb) = (mn)(ab)

Def 3.2.6 An element a ∈ R is called a unit if it has a multiplicative
inverse in R. That is, ∃a−1 ∈ R such that aa−1 = 1 = a−1a.

Prop 3.2.10 The set R× of units in a ring R forms a group under
multiplication.

Def 3.2.12 In a ring R a nonzero element a is called a divisor of zero if ∃
a nonzero element b such that ab = 0 or ba = 0.

Def 3.2.13 an integral domain is a nonzero commutative ring that has no
zero-divisors, and therefore

1. ab = 0 =⇒ a = 0 or b = 0, and

2. a 6= 0 & b 6= 0 =⇒ ab 6= 0

Prop 3.2.16 R an integral domain. If ab = ac and a 6= 0, then b = c.

Prop 3.2.17 m ∈ N. Then Z \mZ is an integral domain iff m is prime.

Thm 3.2.18 Every finite integral domain is a field.

3.2 Properties of Rings

Def 3.3.1 Let R be a ring. A polynomial over R is an expression of the
form

P = a0 + a1X + a2X
2

+ ...+ amX
m

for some nonnegative integer m and elements ai ∈ R for 0 ≤ i ≤ m.
The set of all polynomials over R is denoted R[X]. In case am is nonzero,
the polynomial P has degree m, written deg(P), and am is its leading
coefficient. When am = 1, then P is monic.

Def 3.3.2 R[X] is a ring of polynomials ith coefficients in R. The zero
and identity of R is the same identity as R[X].

Lem 3.3.3

1. If R is a ring with no zero divisors, then R[X] has no zero divisors
and deg(PQ) = deg(P ) + deg(Q) for nonzero P,Q ∈ R[X].

2. If R is an integral domain then so is R[X].

Prop if R is an integral domain then R[X]× = R×.

Thm 3.3.4 Let R be an integral domain and let P,Q ∈ R[X] with Q
monic. THen ∃ unique A,B ∈ R[X] such that P = AQ + B and
deg(B) < deg(Q) or B = 0.

3.3 Polynomials

Def 3.3.6 Let R be a commutative ring and P ∈ R[X] a polynomial. THen
the polynomial P can be evaluated at the element λ ∈ R to produce P (λ)
by replacing the powers of X in the polynomial P by the corresponding
powers of λ. In this way we have a mapping R[X] → Maps(R,R). An
element λ ∈ R is a root of P if P (λ) = 0.

Prop 3.3.9 Let R be a commutative ring, λ ∈ R and P (X) ∈ R[X].
Then λ is a root of P (X) iff (X − λ) divides P (X).

Thm 3.3.10 Let R be a field, or generally an integral domain. Then a
nonzero polynomial P ∈ R[X] \ {0} has at most deg(P ) roots in R.

Def 3.3.11 A field F is algebraically closed if each nonconstant polynomial
P ∈ F [X] \ F with coefficients in F has a root in F

Thm 3.3.13 The field of complex numbers, C is algebraically closed.

Thm 3.3.14 If F is an algebraically closed field, then every nonzero polyno-
mial P ∈ F [X] \ {0} decomposes into linear factors

P = c(X − λ1)(X − λ2)(X − λ3)

This decomposition is unique up to ordering.

Def 3.4.1 Let R and S be rings. A mapping f : R → S is a ring homo-
morphism if the following hold for all x, y ∈ R:

• f(x+y)=f(x)+f(y)

• f(xy)=f(x)f(y)

Note: identity is not necessarily preserved! The identiy is idempotent,
i.e. f(12) = f(1) =⇒ f(1)(f(1) − 1) = 0, so either f(1) = 1 or
f(1) = 0, in which case f = 0 is the zero ring homomorphism.
Note: composition of ring homomorphisms is a ring homomorphism and
inverse of a ring isomorphism is a ring isomorphism.

Lem 3.4.5 Let R and S be rings and f : R → S a ring homomorphism.
Then ∀x, y ∈ R and m ∈ Z:

• f(0R) = 0s

• f(−x) = −f(x)

• f(x− y) = f(x)− f(y)

• f(mx) = mf(x)

• f(x)n = (f(x))n

Def 3.4.7 A subset I of a ring R is an ideal, written I ER if the following
hold:

1. I 6= ∅

2. I is closed under subtraction

3. ∀i ∈ I and r ∈ R we have that ri, ir ∈ I

Def 3.4.11 Let T ⊂ R and R a commutative ring. Then the ideal of R
generated by T is the set

R〈T 〉 = {r1t1 + ...+ rmtm : t1, ..., tm ∈ T, r1, ..., rm ∈ R}

Prop 3.4.14 Let R be a commutative ring and let T ⊆ R. THen R〈T 〉 is
the smallest ideal of R that containss T .

Def 3.4.15 LetR be a commutative ring. An ideal I of R is called a principal
ideal if I = 〈T 〉 for some t ∈ R.

3.4 Homomorphisms, Ideals and Subrings
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Def 3.4.17 Let R and S be rings with zero elements 0R and 0S respectively
and let f : R → S be a ring homomorphism. Since f is in particular a
group homomorphism from (R,+) to (S,+), the kernel of f already has
a meaning

ker(f) = {r ∈ R : f(r) = 0S}

Prop 3.4.18 ker(f) is an ideal of R.

Lem 3.4.20 f is injective iff ker(f) = {0}

Lem 3.4.21 The intersection of a collection of ideals of R is an ideal of R.

Lem 3.4.22 Let I and J be ideals of R. THen I + J = {a + b : a ∈
I, b ∈ J} is an ideal of R.

Def 3.4.23 A subset R′ of R is asubring of R if R′ itself is a ring under
the operation of addition and multiplication defined in R.
Prop 3.4.26 textbfTest for Subring:

1. R′ has a multiplicative identity,

2. R′ is closed under subtraction,

3. R′ is closed under multiplication.

Prop 3.4.29 Let f : R→ S be a ring homomorphism.

1. if R′ is a subring of R, then f(R′) is a subring of S. In particular,
im(f) is a subring of S.

2. Assume f(1R) = 1S . If x is a unit in R, f(x) is a unit in S and

(f(x))−1 = f(x−1).

Def 3.5.1 A relation R on a set X is a subset R ⊆ X×X. In this
context, and only in this context, instead of writing (x, y) ∈ R, I
will write xRy. Then R is an equivalence relation on X when for
all elements x, y, z ∈ X the following hold:

1. Reflexivity: xRx;

2. Symmetry: xRy ⇔ yRx;

3. Transitivity: (xRy and yRz)→ xRz.

Def 3.5.3 An element of an equivalence class is called a represen-
tative of the class.
Def 3.5.5 Given an equivalence relation ∼ on the set Xset of
equivalence classes, which is a subset of the power set P(X), is
given by

(X/∼) := {E(x) : x ∈ X}

There is a canonical mapping can : X → (X/∼), x 7→ E(x). It is
a surjection.
Remark: Universal property of the set of equivalence classes:

X (X/ ∼)

Z

can

f

f

Def 3.5.7 g : (X/ ) → Z is well defined if I can find a mapping
f : X → Z such that x y → f(x) = f(y) and g = f̄ .

3.5 Equivalence Relations

Def 3.6.1 Let I E R be an ideal in a ring R. The set

x+ I := {x+ i : i ∈ I} ⊆ R

is a coset of I in R or the coset of x with respect to I in R.

Def 3.6.3 Let R be a ring, I ER an ideal, and ∼ the equivalence relation
defined by x ∼ y ⇔ x− y ∈ I. Then R/I, the factor ring of R by I or
the quotient of R by I, is the set (R/ ∼) of cosets of I in R.

Thm 3.6.4 Let R be a ring and I ER an ideal. Then R/I is a ring, where
addition and multiplication are defined by

(x+ I) u (y + I) = (x+ y) + I for all x, y ∈ R

(x+ I) · (y + I) = xy + I for all x, y ∈ R.

Thm 3.6.7 (Universal Prop. of Factor Rings) R a ring and I an ideal of R.

1. The mapping can : R → R/I sending r to r + I for all r ∈ R is
a surjective ring homomorphism with kernel I.

2. If f : R → S is a ring homomorphism with f(I) = {0S},
so that I ⊆ ker f , then there is a unique ring homomorphism
f : R/I → S such that f = f ◦ can.

R R/I

S

can

f

f

Thm 3.6.9 (First Isomorphism Theorem for Rings) Let R and S be rings.
Then every ring homomorphism f : R −→ S induces a ring isomorphism

f : R/ ker f
∼→ imf.

3.6 Factor Rings and the First Isomorphism Theorem

Def 3.7.1 A (left) module M over a ring R is a pair consisting of an abelian
group M = (M,u) and a mapping

R×M → M

(r, a) 7→ ra

such that for all r, s ∈ R and a, b ∈M the following identities hold:

r(au b) = (ra) u (rb)

(r + s)a = (ra) u (sa)

r(sa) = (rs)a

1Ra = a

Def 3.7.8 Let R be a ring and M an R-module.

1. 0Ra = 0M for all a ∈M .

2. r0M = 0M for all r ∈ R.

3. (−r)a = r(−a) = −(ra) for all r ∈ R, a ∈ M . Here the first
negative is a negative in R, the last two are negatives in M .

3.7 Modules

Def 3.7.11 Let R be a ring and let M,N be R–modules. A mapping
f : M → N is an R–homomorphism or homomorphism if the following
hold for all a, b ∈M and r ∈ R

f(a+ b) = f(a) + f(b)

f(ra) = rf(a)

The kernel of f is ker f = {a ∈ M : f(a) = 0N} ⊆ M and the image
of f is imf = {f(a) : a ∈ M} ⊆ N. If f is a bijection then it is an
R-module isomorphism or isomorphism, I write M ∼= N and say M and
N are isomorphic.

Def 3.7.15 A non–empty subset M ′ of an R–module M is a submodule
if M ′ is an R–module with respect to the operations of the R–module M
restricted to M ′.

Prop 3.7.20 (Test for a submodule) Let R be a ring and let M be an
R–module. A subset M ′ of M is a submodule if and only if

1. 0M ∈M ′

2. a, b ∈M ′ ⇒ a− b ∈M ′

3. r ∈ R, a ∈ M ′ ⇒ ra ∈ M ′. Note if f is an R-module ho-
momorphism, then ker f and imf are submodules of M and N
respectively.

Lem 3.7.22 Let R be a ring, let M and N be R-modules and let
f : M → N be an R-homomorphism. Then f is injective if and only
if ker f = {0M}.
Def 3.7.23 Let R be a ring, M an R-module and let T ⊆ M . Then the
submodule of M generated by T is the set

R〈T 〉 = {r1t1 + · · ·+ rmtm : t1, . . . , tm ∈ T, r1, . . . , rm ∈ R},

together with the zero element in the case T = ∅. Cyclic means generated
by a singleton: M = R〈t〉.
Lem 3.7.28 Let T ⊆M . Then R〈T 〉 is the smallest submodule of M that
contains T .
Lem 3.7.29 The intersection of any collection of submodules of M is a
submodule of M .
Lem 3.7.30 Let M1 and M2 be submodules of a M . Then

M1 +M2 = {a+ b : a ∈M1, b ∈M2}

is a submodule of M .

Thm 3.7.31 Let R be a ring, M an R-module and N a submodule of M .
For each a ∈M the coset of a with respect to N in M is

a+N = {a+ b : b ∈ N}

It is a coset of N in the abelian group M and so is an equivalence class for
the equivalence relation a ∼ b⇔ a− b ∈ N . I define M/N , the factor of
M by N or the quotient of M by N , to be the set (M/ ∼) of all cosets
of N in M , with

(a+N) u (b+N) = (a+ b) +N

r(a+N) = ra+N

The zero of M/N is the coset 0M/N = 0M + N . The negative of
a+N ∈M/N is the coset −(a+N) = (−a) +N .

Thm 3.7.33 (First Isomorphism Theorem for Modules) Let R be a ring and
let M and N be R-modules. Then every R-homomorphism f : M −→ N
induces an R-isomorphism

f : M/ ker f
∼→ imf.
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Def 4.1.1 The group of all permutations of the set {1, 2, . . . , n}, also
known as bijections from {1, 2, . . . , n} to itself, is denoted by Sn and
called the n-th symmetric group. It is a group under composition and it
has n! elements.
A transposition is a permutation that swaps two elements of the set and
leaves all the others unchanged.
Def 4.1.2 An inversion of a permutation σ ∈ Sn is a pair (i, j) such
that 1 6 i < j 6 n and σ(i) > σ(j). The number of inversions of the
permutation σ is called the length of σ and written `(σ). In formulas:

`(σ) = |{(i, j) : i < j but σ(i) > σ(j)}|

The sign of σ is defined to be the parity of the number of inversions of σ.
In formulas:

sgn(σ) = (−1)
`(σ)

even permutation has sign(σ) = +1, odd has sign(σ) = −1.
Note: the transposition that swaps i and j, leaving everything else unchan-
ged, has length 2|i− j| − 1
Lem 4.1.5 For each n ∈ N the sign of a permutation produces a group
homomorphism sgn : Sn → {+1,−1} from the symmetric group to the
two-element group of signs. In formulas:

sgn(στ) = sgn(σ)sgn(τ) for all σ, τ ∈ Sn

.
Def 4.1.7 (Alternating Group, An) For n ∈ N, the set of even permutati-
ons in Sn forms a subgroup of Sn because it is the kernel of the group
homomorphism sgn : Sn → {+1,−1}.
Note: every permutation in Sn can be described as a product of trans-
positions of neighbouring numbers, that is of the permutations (i i+1)
swapping i and i+ 1 for some 1 6 i 6 n− 1.

4.1 Sign of Permutation

Def 4.2.1 Let R be a commutative ring and n ∈ N. Then det :
Mat(n;R)→ R is given by:

A =


a11 · · · a1n

.

.

.
. . .

.

.

.
an1 · · · ann

 7→ det(A) =
∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n)

4.2 Determinants

Def 4.3.1 Let U, V and W be F -vector spaces. A bilinear form on U ×V
with values in W is a mapping H : U×V → W which is a linear mapping
in both of its entries. It satisfies

H(u1 + u2, v1) = H(u1, v1) +H(u2, v1)

H(λu1, v1) = λH(u1, v1)

H(u1, v1 + v2) = H(u1, v1) +H(u1, v2)

H(u1, λv1) = λH(u1, v1)

Symmetric: if U = V and H(u, v) = H(v, u) for all u, v ∈ U
Alternating: if U = V and H(u, u) = 0 for all u ∈ U

Def 4.3.4 Let V and W be F -vector spaces. A multilinear form H :
V × · · · × V → W is alternating if it vanishes on every n-tuple of ele-
ments of V that has at least two entries equal, in other words if:

(∃ i 6= j with vi = vj)→ H(v1, . . . , vi, . . . , vj , . . . , vn) = 0

Thm 4.3.6 Let F be a field. The mapping det : Mat(n;F )→ F is the uni-
que alternating multilinear form on n-tuples of column vectors with values
in F that takes the value 1F on the identity matrix.

4.3 Characterising the Determinant

Thm 4.4.1 Let R be a commutative ring and let A,B ∈ Mat(n;R). Then

det(AB) = det(A)det(B).

Thm 4.4.2 The determinant of a square matrix with entries in a field F is
non-zero if and only if the matrix is invertible.

Rem if A is invertible then det(A−1) = det(A)−1.

Rem det(A) = det(B−1AB)

Lem 4.4.4 For all A ∈ Mat(n;R) with R a commutative ring

det(AT
) = det(A)

Def 4.4.6 Let A ∈ Mat(n;R) for some commutative ring R and natural
number n. Let i and j be integers between 1 and n. Then the (i, j)

cofactor of A is Cij = (−1)i+jdet(A〈i, j〉) where A〈i, j〉 is the matrix
I obtain from A be deleting the i-th row and the j-th column.

Thm 4.4.7 Let A = (aij) be an (n× n)-matrix with entries from a com-
mutative ring R. For a fixed i the i-th row expansion of the determinant
is

det(A) =

n∑
j=1

aijCij

and for a fixed j the j-th column expansion of the determinant is

det(A) =

n∑
i=1

aijCij

Def 4.4.8 Let A be an (n× n)-matrix with entries in a commutative ring
R. The adjugate matrix adj(A) is the (n × n)-matrix whose entries are
adj(A)ij = Cji where Cji the (j, i)-cofactor.

Thm 4.4.9 Let A be an (n× n)-matrix with entries in a commutative ring
R. Then

A · adj(A) = (detA)In

.
Cor 4.4.11 A ∈ Mat(n;R) is invertible if and only if det(A) ∈ R×.

4.4 Calculating Determinants

Def 4.5.1 Let f : V → V be an endomorphism of an F -vector space V .
A scalar λ ∈ F is an eigenvalue of f iff there exists a non-zero vector
~v ∈ V such that f(~v) = λ~v.
Each such vector is called an eigenvector of f with eigenvalue λ.
For any λ ∈ F , the eigenspace of f with eigenvalue λ is

E(λ, f) = {~v ∈ V : f(~v) = λ~v}

Thm 4.5.4 Each endomorphism of a non-zero finite dimensional vector
space over an algebraically closed field has an eigenvalue.

Def 4.5.6 Let R be a commutative ring and let A ∈ Mat(n;R) be a square
matrix with entries in R. The polynomial det(A − xIn) ∈ R[x] is called
the characteristic polynomial of the matrix A. It is denoted by

χA(x) := det(A− xIn)

Thm 4.5.8 Let F be a field and A ∈ Mat(n;F ) a square matrix with
entries in F . The eigenvalues of the linear mapping A : Fn → Fn are
exactly the roots of the characteristic polynomial χA.

4.5 Eigenvalues and Eigenvectors

Prop 4.6.1 Triangularisable iff χA(x) decomposes into linear factors in
F [x].

Rem 4.6.2 endomorphism A is triangularisable iff it is conjugate to an
upper triangular matrix.

Def 4.6.5 An endomorphism f : V → V of an F -vector space V
is diagonalisable if and only if there exists a basis of V consisting of
eigenvectors of f .

Thm 4.6.9 If χA(x) is the characteristic polynomial of endomorphism A,
then χA(A) = 0.

4.6 Triangular, Diagonal, Cayley-Hamilton

Def 5.1.1 Let V be a vector space over R. An inner product on V is a
mapping

(−,−) : V × V → R

that satisfies the following for all ~x, ~y, ~z ∈ V and λ, µ ∈ R:

1. (λ~x+ µ~y, ~z) = λ(~x, ~z) + µ(~y, ~z)

2. (~x, ~y) = (~y, ~x)

3. (~x, ~x) > 0, with equality if and only if ~x = ~0

Def 5.1.3 Let V be a v.s. over C. An inner product on V is a map
(−,−) : V ×V → C that satisfies the followingb ∀~x, ~y, ~z ∈ V, λ, µ ∈ C:

1. (λ~x+ µ~y, ~z) = λ(~x, ~z) + µ(~y, ~z)

2. (~x, ~y) = (~y, ~x)

3. (~x, ~x) > 0, with equality if and only if ~x = ~0

ex 5.1.2 Standard inner product is given by

(~v, ~w) = v1w1 + v2w2 + · · ·+ vnwn (R)

(~v, ~w) = v1w1 + v2w2 + · · ·+ vnwn (C)

Def 5.1.5 norm ‖~v‖ ∈ R of a vector ~v is defined as the non-negative square
root

‖~v‖ =
√

(~v, ~v)

Vectors whose length is 1 are called units. Two vectors ~v, ~w are orthogonal
and I write ~v ⊥ ~w if and only if (~v, ~w) = 0.
ex 72 In an inner product space V show that: ‖λ~v‖ = |λ|‖~v‖ for all ~v ∈ V
and all λ ∈ R or C.
ex 5.1.6 If two vectors ~v and ~w in an inner product space are at right-angles
then Pythagoras’ Theorem holds

‖~v + ~w‖2 = ‖~v‖2 + ‖~w‖2

Def 5.1.7 A family (~vi)i∈I for vectors from an inner product space is an
orthonormal family if all the vectors ~vi have length 1 and if they are pairwise
orthogonal to each other, meaning

(~vi, ~vj) = δij

An orthonormal family that is a basis is an orthonormal basis.
Rem 5.1.9 Suppose that V is an inner product space and that (~vi)i∈I is
an orthonormal basis. Then I can write any ~w ∈ V in the form

~w =
∑
i∈I

(~w,~vi)~vi

5.1.10 Every finite dim. inner product space has an orthonormal basis.

5.1 Inner Product Spaces: Definitions
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Def 5.2.1 Let V be an inner product space and let T ⊆ V be an
arbitrary subset. Define

T⊥ = {~v ∈ V : ~v ⊥ ~t for all ~t ∈ T},

calling this set the orthogonal to T .

ex 73 In an inner product space, V , T⊥ is a subspace for any
T ⊆ V . In particular,

T⊥ = 〈T 〉⊥.

Prop 5.2.2 Let V be an inner product space and let U be a finite
dimensional subspace of V . Then U and U⊥ are complementary
in the sense of Def 1.7.6. That is,

V = U ⊕ U⊥

Def 5.2.3 Let U be a finite dimensional subspace of an inner pro-
duct space V . The space U⊥ is the orthogonal complement to
U . The orthogonal projection from V onto U is the mapping

πU : V → V

that sends ~v = ~p+ ~r to ~p.

Prop 5.2.4 Let U be a finite dimensional subspace of an inner
product space V and let πU be the orthogonal projection from V
onto U .

1. πU is a linear mapping with im(πU ) = U and kernel
ker(πU ) = U⊥.

2. If {~v1, . . . , ~vn} is an orthonormal basis of U , then πU is
given by the following formula for all ~v ∈ V

πU (~v) =

n∑
i=1

(~v,~vi)~vi

3. π2
U = πU , that is πU is an idempotent.

Thm 5.2.5 (Cauchy Schwarz Inequality) Let ~v, ~w be vectors in an
inner product space. Then

|(~v, ~w)| 6 ‖~v‖‖~w‖

with equality if and only ~v and ~w are linearly dependent.

Cor 5.2.6 The norm ‖ · ‖ on an inner product space V satisfies,
for any ~v, ~w ∈ V and scalar λ:

1. ‖~v‖ > 0 with equality if and only if ~v = ~0.

2. ‖λ~v‖ = |λ|‖~v‖
3. ‖~v + ~w‖ 6 ‖~v‖+ ‖~w‖, the triangle inequality

Thm 5.2.7 Let ~v1, . . . , ~vk be a linearly independent vectors in an
inner product space V . Then there exists an orthonormal family
~w1, . . . , ~wk with the property that for all 1 6 i 6 k

~wi ∈ R>0~vi + 〈~vi−1, . . . , ~v1〉

ex 74 There is a unique orthonormal family whose elements satisfy
the property displayed in the statement of Thm 5.2.7.

5.2 Orthogonal Complements and Projections

Def 5.3.1 Let V be an inner product space. Two endomorphism
T, S : V → V are adjoint to one another if for all ~v, ~w ∈ V ,

(T~v, ~w) = (~v, S ~w)

In this case I will write S = T ∗ and call S the adjoint of T .

Rem 5.3.2 Any endomorphism has at most one adjoint. This is
because if both S and S′ are adjoint to T then (~v, S ~w−S′ ~w) = 0
for all ~v, ~w ∈ V , so the positivity axiom for an inner product
space immediately implies that S ~w = S′ ~w for all ~w.

ex 75 If T ∗ is the adjoint of T , then T ∗ has an adjoint and it is
(T ∗)∗ = T .

ex 5.3.3 The adjoint of multiplication by A in Rn is multiplication
by AT. The adjoint of multiplication by A in Cn is multiplication

by A
T

.

Thm 5.3.4 Let V be a finite dimensional inner product space. Let
T : V → V be an endomorphism. Then T ∗ exists. That is,
there exists a unique linear mapping T ∗ : V → V such that for all
~v, ~w ∈ V

(T~v, ~w) = (~v, T ∗ ~w)

Def 5.3.5 An endomorphism of an inner product space T : V → V
is self-adjoint if it equals its own adjoint, that is if T ∗ = T .

ex 5.3.6 A real (n× n)-matrix A describes a self-adjoint mapping
on the standard inner product space Rn precisely when A is
symmetric, that is when AT = A. A complex (n × n)-matrix A
describes a self-adjoint mapping on the standard inner product

space Cn precisely when A = A
T

holds. Such matrices are called
hermitian.

Thm 5.3.7 Let T : V → V be a self-adjoint linear mapping on an
inner product space V .

1. Every eigenvalue of T is real.

2. If λ and µ are distinct eigenvalues of T with corresponding
eigenvectors ~v and ~w, then (~v, ~w) = 0.

3. T has an eigenvalue.

Thm 5.3.9 (The Spectral Theorem for Self-Adjoint Endo-
morphisms) Let V be a finite dimensional inner product space
and let T : V → V be a self-adjoint linear mapping. Then V has
an orthonormal basis consisting of eigenvectors of T .

Def 5.3.11 an orthogonal matrix is an (n × n)-matrix P with
real entries such that PTP = In. In other words, an orthogonal
matrix is a square matrix P with real entries such that P−1 = PT.

ex 76 The condition that PTP = In is equivalent to the columns
of P forming an orthonormal basis for Rn with its standard inner
product.

ex 77 The set {P ∈ Mat(n;R) : PTP = In} is a group. It is
called the orthogonal group, O(n).

Cor 5.3.12 (The Spectral Theorem for Real Symmetric Matrices)
Let A be a real (n × n)-symmetric matrix. Then there is an
(n× n)-orthogonal matrix P such that

PTAP = P−1AP = diag(λ1, . . . , λn)

where λ1, . . . , λn are the (necessarily real) eigenvalues of A, repe-
ated according to their multiplicity as roots of the characteristic
polynomial of A.

5.3 Adjoints and Self-Adjoints
Def 5.3.14 An unitary matrix is an (n×n)-matrix P with complex

entries such that P
T
P = In. In other words, a unitary matrix is

a square matrix P with complex entries such that P−1 = P
T

.

ex 78 The condition that P
T
P = In is equivalent to the columns

of P forming an orthonormal basis for Cn with its standard inner
product.

ex 79 The set {P ∈ Mat(n;C) : P
T
P = In} is a group. It is

called the unitary group, U(n).

Cor 5.3.15 [The Spectral Theorem for Hermitian Matrices] Let A
be a (n × n)-hermitian matrix. Then there is an (n × n)-unitary
matrix P such that

P
T
AP = P−1AP = diag(λ1, . . . , λn)

where λ1, . . . , λn are the (necessarily real) eigenvalues of A, repe-
ated according to their multiplicity as roots of the characteristic
polynomial of A.
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